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Biomedical Application of Target Tracking in Clutter

Adam P. Goobic, Michael E. Welser, Scott T. Acton, and Klaus Ley
Virginia Image and Video Analysis (VIVA)
Department of Electrical Engineering
University of Virginia
Charlottesville, VA 22904 USA

Abstract

The movement of leukocytes (white blood cells) and
their interaction with the endothelium (vessel wall)
provides valuable information about the mechanism of
inflammation and inflammatory disease. In order to
investigate leukocyte motion within living animals,
advanced automated tracking algorithms are requisite.
We introduce military target tracking algorithms for
the purpose of tracking cell movement. In 33
experiments, we compare the tracking performance of
five trackers. The trackers tested include the centroid
tracker, the correlation tracker, an enhanced centroid
tracker, an enhanced correlation tracker and an active
contour (snake) tracker. Of the five methods, the snake
tracker proved to be the most robust method in terms of
the highest percentage of frames tracked and the
lowest root mean-squared error. The paper provides
an overview of the five trackers and gives experimental
results.

1. Introduction

A rolling leukocyte is an activated white blood cell
that travels along the endothelium wall to the site of
injury.  Tracking rolling leukocytes  during
inflammation is critical for analysis of the
inflammatory process. Previous methods used to track
cell movements in vitro (in flow chambers) with
centroid and correlation tracking algorithms were
moderately successful, but proved insufficient in vivo
(in living animals). Although intravital tracking is more
difficult, it provides valuable characterization of the
cell-vessel interaction that is not possible within a flow
chamber. This paper compares the performance of the
basic centroid and correlation trackers, enhanced
centroid and correlation trackers, and an active
contour-based snake tracker. This comparison
evaluates the algorithm robustness for tracking cells
within living animals using video microscopy.

Active contour-based tracking shows significant
potential for in vivo applications. Since we know the

general shape and scale of the cells to be tracked, we
can constrain active contours to capture such shapes.
Our initial study concludes that the snake tracker
algorithm results are superior to the basic and enhanced
centroid and correlation trackers. These snake
algorithms will be further integrated into a robust
automatic in vivo cell tracking system. Such a system
would eliminate the current time-consuming technique
of manual tracking to observe rolling leukocytes.
Furthermore, automated tracking will remove
investigator bias from tracking data.

2. Methods

We evaluated five trackers that represent a broad
spectrum of tracking methodologies. The conventional
centroid and correlation trackers are included in the
study. Enhanced versions of the centroid and
correlation trackers are also analyzed. Finally, we
scrutinize a tracker based on active contours. Here, we
briefly review the approach taken by each tracking
system.

2.1 The Centroid Tracker

The first tracking algorithm implemented is a simple
centroid tracker. The fundamental idea of the centroid
tracker is to compute the "center of mass” within a
subimage to locate the center of the target. Here,
"mass" is the sum of intensities in the subimage called
the frack gate. We automatically compute the track
gate boundary to bound the target cell. Within this
track gate, we use the pixel intensities to calculate the
center of mass. If sufficient contrast exists between the
cell and the background, the centroid tracker gives
reliable results. Where contrast varies or the scene is
cluttered, the centroid is apt to lose track of the target
cell. In the cluttered environment of intravital cell
tracking, the centroid tracker is prone to locking on to
brighter cells or to the endothelium (vessel wall).

This material is based upon work supported in part by the
U. S. Army Research Laboratory and the U. S. Army Research
Office under contract/grant number DAAD19-01-1-0594




2.2 The Correlation Tracker

The second tracking algorithm implemented is a
basic correlation tracker. The fundamental idea of a
correlation tracker is to locate the cell though template
matching. Specifically, the correlation tracker creates a
template of the leukocyte to be tracked from the initial
track gate, then uses this template to find the highest
normalized cross correlation measure within future
frames to locate the cell position. For template T and
subimage S, the normalized cross correlation at
translation (a, b) is given by

S(x=a,y-b)T(x,y)
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The correlation tracker is straightforward to
implement, and is able to detect objects that do not
change size, shape, shade or move great distances from
the previous frame. Because leukocytes in vitro remain
relatively stable visually, the correlation is fairly
successful in a flow chamber environment. However,
the cluttered videos obtained in vivo are beyond the
capability of this basic tracker.

c(a,b)=

2.3 The SuperCentroid Tracker

The third tracking algorithm tested is an enhanced
centroid tracker called the SuperCentroid. The
fundamental difference between SuperCentroid and the
conventional centroid tracker is that SuperCentroid
uses adaptive template matching to determine when the
target object is lost. Adaptive template matching uses
an adaptive target template to locate the object of
interest by matching the template to the object in the
image and allowing the most recent target image to
gradually alter the template. Adaptive template
matching gives the ability to track cells that change
size, shape, and intensity due to cell deformation or
camera focus, angle, and lighting. The template Ty, is
updated by taking a weighted average of the current
track gate O, with the current template T:

Tis1 = YTi + (1-P0; 2
where both T} and Oy are centered at the centroid.

2.4 The SuperCorrelation Tracker

The fourth tracking algorithm in the study is an
enhanced  correlation tracker  called  the
SuperCorrelation tracker. SuperCorrelation, like the
SuperCentroid, uses adaptive template matching.
SuperCorrelation also uses the centroid to re-position
the center of the template. In addition to the
mechanism of adaptive template matching, both the

SuperCentroid and the SuperCorrelation trackers utilize
several additional enhancements.

2.5 Common_ Features of Enhanced Trackers

Both SuperCentroid and SuperCorrelation increase
tracker robustness by implementing background
removal, image enhancement and the Kalman filter.
Background removal extracts non-moving features
such as muscle, tissue, and other vessel walls. It is
accomplished by time-averaging the video frames in a
sequence and subtracting the averaged frame from each
video frame while tracking.

Given that the cells are roughly circular in shape and
have a known diameter, we can utilize morphological
filters to further reduce clutter. We have used both
morphological anisotropic diffusion [1] and standard
morphological filters for enhancement. In this study,
we report results with the standard morphological
open-close filter:

E=(IoB)*B 3)
where E is the enhanced image, I is the input image,
and B is a structuring element that is circular and set to
be of smaller scale than the cells.

The third enhancement common to both the
SuperCentroid and SuperCorrelation trackers is the use
of a predictive filter for coasting. The Kalman filter
provides a means to predict leukocyte movement when
the leukocyte is obscured by clutter. Essentially, the
Kalman filter uses the history of the leukocyte position
to the position in the subsequent frame. If the tracker
loses the target (as detected by poor correlation), the
Kalman filter prediction can be used as the observation.
In this case, we say that the tracker is coasting.

We form two Kalman filters for prediction: one for
the horizontal position of the leukocyte and one for the
vertical position of the leukocyte [2]. Let i; be the row
position of a cell at video frame k. Then

iger = Ix+ Ot v,’; [C))
where &t is the time between frames (here 1/30 s) and

v;c is the velocity. The predicted row position is
2 2 Al
Bt = e * O Ve O
where {kl k is the filtered row position estimate, and

9;( +H|k is the predicted velocity. Once we have

tracked a cell for a few frames, the Kalman gains will
give more weight to the predicted position and velocity
over the observed position and velocity. The Kalman
filter provides the minimum mean-squared error
solution to the track position estimation and prediction




problem [2], given the assumption of a constant
velocity target.

2.6 The Snake Tracker

The fifth tracking algorithm we implemented is an
active contour or snake tracker. The snake algorithm
tries to minimize an energy function based on internal
snake energy (tension and rigidity), external energy
(co-location with maxima in image gradient), shape,
size, position, and sampling constraints. These
constraints are weighted and combined into an energy
functional [3]:

Egnake =MEint +A2Eext +/13Eshape ©)

+ A4 Esize + A5Epos + A6 Esampling -
The internal energy is the bending/stretching energy
that is minimized by low magnitudes of the first and
second derivatives of the curve C(s) with respect to the
parameter s. The external energy is minimized when
the contour is located over the edge of a cell — the
position of high gradient magnitude.

These snakes are well-suited for contrast-changing
and shape-changing cells. Because we know shape size
and position information about cells a priori we can
incorporate these as parameters in our energy function
to provide a more robust algorithm. Snake shape can be
constrained to known elliptical and circular cell shapes.
Snake size is known, because we know the
approximate cell size from the scale of the video.
Figure 1 shows the importance of the combination of
the shape and size constraints in capturing a leukocyte
for tracking.

The position constraint incorporates future cell
positions as predicted by a Kalman filter. The snake
used here is parametric, described by several (~100)
discrete positions known as snaxels, which outline the
target object. As the snake evolves with cell variations,
the snaxel positions adjust to keep an even spacing
around the target object boundary. In addition, the
snake re-parameterizes itself (keeping uniform
sampling) according to the sampling energy term.
Euler equations derived from (6) provide updates for
the (x, y) position of each snaxel [3].

The assumed initial radius of the snake tracker is
integral to effective tracking. This parameter allows the
snake to formulate the size constraint, which governs
the relative size of the circle or ellipse shape constraint.
An accurate value of the initial radius as compared to
the actual radius of the target cell realizes a more
effective snake tracker.

=l (d)

Figure 1: (a) Leukocytes within a video frame. (b)
Tracking with shape constraint only. (c) Tracking with
size constraint only. (d) Tracking with both shape and

size constraints. The initial and the final snakes are

shown in white and black respectively [3].

2.7 Tracker Performance Measures

We determine a tracker’s performance by the
percentage of frames tracked and the root mean-
squared error (RMSE). The percentage of frames
tracked is the number of frames tracked by the tracker
divided by the number of frames the cell is in the video
sequence. Here, we count a frame as "tracked" if the
computed position is within one cell radius of the
manually determined position. The RMSE (in microns)
describes how accurately the tracker tracks the cell as
compared to the “ground truth” data.

The combination of the percentage of frames tracked
and the RMSE yields the qualitative performance
ratings shown in Table 1.

Table 1: Tracker performance ratings

Performance | % Frames | RMSE
Rating Tracked |(microns)
Excellent 90-1000 below 1
Good 75-89 1-2
Fair 60-7 3-5
Poor below 60 above 5

3. Results and Conclusions

Our dataset consists of intravital microscopy video
recordings of rolling leukocytes in the mouse cremaster
muscle observed via transillumination. We tracked
thirty-three cells from ten venules (small vessels). Five
sets are TNF-a treated venules; five sets are untreated.
The TNF-o treatment increases the inflammatory
response and thus slows down the rolling cells. Such
cells are then more easily tracked at the lower




velocities. Each video sequence contains the tracked
cells for about 2 seconds (or for 60 frames at 30
frames/second). The efficacy of each tracker is
determined by comparing experimental results with
“ground truth” data — a manual frame-by-frame record
of cell position. Currently all five trackers acquire the
initial position from the first “ground truth” position
value. We intend to integrate automatic cell
identification in future tracking systems.

The snake tracker produced results with the smallest
average RMSE and largest average percentage of
frames tracked. The results attest to the snake tracker's
robust ability to track cells in cluttered conditions. The
snake tracker is able to overcome obstacles that inhibit
the other trackers such as bright cells in the
neighborhood of the target cell, low contrast with the
background, and fast moving cells.

The numerical results yielded by the snake tracker
prove the potential for a robust in vivo cell tracker. As
shown in Figure 2, the snake tracker is able to track
100% of the frames in all 16 TNF-a data sets. In
addition, the average RMSE for the 16 TNF-o
sequences is 0.33 microns, for cells that measure ~10
microns in diameter. The performance of the
SuperCorrelation tracker was acceptable, but the
average RMSE of 1.94 is over five times that of the
snake tracker. The SuperCentroid, centroid, and
correlation trackers do not perform nearly as well as
evidenced by Figure 2. In the untreated venules, the
performance of the snake tracker drops to 48% of the
frames tracked successfully. Nevertheless, the
performance of the other four trackers also declines,
with the SuperCentroid providing the next highest
tracking percentage at 35%. In this case, the snake
tracker also has the lowest RMSE by a margin of 7
microns.

00.00
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Figure 2: Comparison of average RMSE (in
microns) and percent tracked for the experiments using
treated venules.

Figure 3 displays the hand-tracked displacements of
the target cell from the initial position (ground-truth),

and each tracker’s attempt to follow the cell for a TNF-
a sequence. Clearly, the snake tracks the target cell
more accurately than the other algorithms in this case.
Similar results are observed from the other 32 data sets.

The snake tracker can be improved in the following
areas: computational complexity, initial radius
specification, and clutter-reducing methods. Currently,
the snake tracker cannot produce results in real-time.
For example, execution of the snake tracker on a
ninety-frame sequence using a desktop machine with a
Pentium 3 processor and 256MB of RAM takes 16
minutes to complete. Thus, the snake tracker needs
about 13 hours to process 50 ninety-frame sequences.
Eventually, we hope to design and implement a system
that can process sequences at or near real time. To
reduce computation time and attain this goal, we are
investigating both hardware and algorithmic
enhancements. The specific algorithmic enhancements
include fast matrix inversion for calculation of the
snake update equations.

Furthermore, the snake tracker will be made more
robust once we can effectively and efficiently identify
the initial radius of the cell. Presently, we use a range
of radius values to achieve tracking for a given cell.
More research is needed to develop a means to
automatically provide the snake tracker with an initial
cell radius. The snake tracker can be further improved
by incorporating additional filters that remove clutter
while maintaining target edges at a range of scales.

A user-friendly software package for laboratory
application is another step in realizing a complete in
vivo cell tracking system. We have prototyped the
Python, a graphical user interface that allows user-
friendly cell selection and automated tracking. The
Python provides for manual target acquisition and
specification of various tracking algorithms and clutter-
reducing filters. A sample screen view of the Python is
shown in Figure 4. :

Snake-based algorithms show significant promise for
future in vivo cell tracking. The ability to track rolling
leukocytes in vivo will bolster research and
development in anti-inflammatory drugs for diseases
such as Crohn’s disease and atherosclerosis.
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Figure 3: Comparison of tracker displacements for a sequence obtained from a TNF- a treated vessel.
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Figure 4: Sample screen view of Python graphical user interface acquiring three ccllbs.
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